If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 6k2 + 1 + -6k = 0 Reorder the terms: 1 + -6k + 6k2 = 0 Solving 1 + -6k + 6k2 = 0 Solving for variable 'k'. Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. 0.1666666667 + -1k + k2 = 0 Move the constant term to the right: Add '-0.1666666667' to each side of the equation. 0.1666666667 + -1k + -0.1666666667 + k2 = 0 + -0.1666666667 Reorder the terms: 0.1666666667 + -0.1666666667 + -1k + k2 = 0 + -0.1666666667 Combine like terms: 0.1666666667 + -0.1666666667 = 0.0000000000 0.0000000000 + -1k + k2 = 0 + -0.1666666667 -1k + k2 = 0 + -0.1666666667 Combine like terms: 0 + -0.1666666667 = -0.1666666667 -1k + k2 = -0.1666666667 The k term is -1k. Take half its coefficient (-0.5). Square it (0.25) and add it to both sides. Add '0.25' to each side of the equation. -1k + 0.25 + k2 = -0.1666666667 + 0.25 Reorder the terms: 0.25 + -1k + k2 = -0.1666666667 + 0.25 Combine like terms: -0.1666666667 + 0.25 = 0.0833333333 0.25 + -1k + k2 = 0.0833333333 Factor a perfect square on the left side: (k + -0.5)(k + -0.5) = 0.0833333333 Calculate the square root of the right side: 0.288675135 Break this problem into two subproblems by setting (k + -0.5) equal to 0.288675135 and -0.288675135.Subproblem 1
k + -0.5 = 0.288675135 Simplifying k + -0.5 = 0.288675135 Reorder the terms: -0.5 + k = 0.288675135 Solving -0.5 + k = 0.288675135 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '0.5' to each side of the equation. -0.5 + 0.5 + k = 0.288675135 + 0.5 Combine like terms: -0.5 + 0.5 = 0.0 0.0 + k = 0.288675135 + 0.5 k = 0.288675135 + 0.5 Combine like terms: 0.288675135 + 0.5 = 0.788675135 k = 0.788675135 Simplifying k = 0.788675135Subproblem 2
k + -0.5 = -0.288675135 Simplifying k + -0.5 = -0.288675135 Reorder the terms: -0.5 + k = -0.288675135 Solving -0.5 + k = -0.288675135 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '0.5' to each side of the equation. -0.5 + 0.5 + k = -0.288675135 + 0.5 Combine like terms: -0.5 + 0.5 = 0.0 0.0 + k = -0.288675135 + 0.5 k = -0.288675135 + 0.5 Combine like terms: -0.288675135 + 0.5 = 0.211324865 k = 0.211324865 Simplifying k = 0.211324865Solution
The solution to the problem is based on the solutions from the subproblems. k = {0.788675135, 0.211324865}
| 9y-12=-32+4y | | 2=x-3x+4 | | F(x)=8x^2-40x+50 | | ln(8)=ln(x+4)-ln(16) | | (x/12)-(x/13)=1 | | 9x^2+4y^2-8y=32 | | 2/7(x-4)^2-1 | | 3m^2+5mn-28n^2=0 | | 1/2(4x16)=0 | | 3+2x=-8 | | 5c+.28=-4 | | 8*16-6*7=13 | | 2x+9=7x+20 | | 5(3m-7)-2=4(5m-12)+1 | | 5x-4+5=8 | | 4(n+7)+2=9n+28-3n | | 5c+.29=-4 | | .003x-.02=.04x | | -4=-3*2+1 | | 7x+3x=7x+-4 | | e^15-3x=28 | | 18.9x^3+6.3x^4=0 | | 2x+3.6=10 | | 8y+12=3y-8 | | 6.3x^4+18.9x^3=0 | | 3a^2*6a^3= | | y=5-6x | | 4y-6=18-4y | | 6x+7-2x+4=-12x-20-17 | | 2(5m-4)-3=19 | | 8(1-4w)=-18 | | y=x^3+3x-5 |